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Abstract: - Smart grid engineering is the key for an optimized use of extensive energy resources which allows 

hybrid renewable energy sources (RES) to be optimally integrated, and their power generation efficiently 

dispatched to the grid over long distance DC transmission lines using the high voltage DC (HVDC) 

transmission technologies. In this context, it is crucial to determine the required number of generating units of 

wind turbines and photovoltaic arrays, and the associated storage capacity for standalone and/or grid connected 

hybrid microgrid. Typically, this is determined using a sizing algorithm based on the observation that the state 

of charge of battery power system should be periodically invariant in order to keep optimum cost. Given the 

intermittency of wind speed and solar irradiance, it is very challenging to accurately calibrate power production 

from wind turbines and photovoltaic arrays, at all times even under varying weather conditions. In this context, 

the convolution neural network (CNN) can symbolize a practical and reliable tool to precisely monitor and 

predict the wind speed and solar irradiance outputs and accordingly manage the power transfer switching 

between areas that have surplus of renewable energies to areas with energy shortage by initiating the energy 

management system (EMS) to dispatch power according to an anticipated schedule. The efficiency of the 

proposed CNN based model was tested using meteorological data related to Beirut city. The experimental 

results indicate that the mean absolute error related to wind speed and solar irradiance are low, demonstrating 

very high forecasting accuracy. 

 

Key-Words: - Smart grid, convolution neural network, energy management system, wind energy forecasting, 

solar energy forecasting. 

 

1 Introduction 
Smart grid engineering is the key for an optimized 

use of extensive energy resources. A modernized 

electrical grid uses analogue or digital information 

and communications technology (ICT) [1]. The 

engineering work will result in enhancements and 

extensions to the existing grid, as well as the 

deployment and development of an extensive two-

way communication system. Smart grid will also 

allow improving grid reliability and operation 

mainly by monitoring real-time power flow and 

improving voltage control to optimize efficient 

power delivery, eliminate waste, and oversupply [2].   

Renewable energy accounted for 19% of global 

final energy demand in 2015, having risen by 0.17% 

per year since 2010 and contribute to the majority of 

the greenhouse gas emissions reduction that is 

needed between now and 2050 for keeping the 

average global surface temperature increase below 2 

°C [3]. 

The fusion of renewable energy generation on 

the grid is a key topic of today’s global power 

systems because it is aiming to reduce the CO2 

emissions in order to stop or at least reduce the 

global warming effect. New “CO2-free” 

technologies are being investigated to fulfil the 

forecasted global energy demand growth [2], and 

new ways are being examined to integrate those 

technologies into the smart grid [4]. 

Managing the hybrid system in terms of the 

required number of active wind-turbines and 

photovoltaic arrays at any given time, as well as the 

associated storage capacity for on-grid hybrid 

microgrid, is a challenging task. This is usually done 

using an  algorithm based on the observation that 

the state of charge of the battery power system 

should be periodically invariant and should keep the 

life cycle cost of the system minimum, while 

satisfying the given load power demand without 

rejection [5]. 

The hybrid renewable energy source (HRES) 

microgrid can be interfaced with the AC bus line 

and afterwards to the utility grid. However, under 

certain circumstances, it becomes economically 
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beneficial, especially for large amount of power and 

over long distances, to transmit power over DC 

transmission lines [6]. Weather AC or DC, smart 

grid will introduce fundamental changes in the use 

of the traditional transmission and distribution 

(T&D) system and will create significant 

challenges. Some of the challenges are to reduce the 

grid congestion, ensure stability and security and 

optimize the use of transmission assets and cost 

generation source. Hence, the grid must be equipped 

with a smart transmission system that deploys 

advanced technologies such as flexible AC 

transmission systems (FACTS) or HVDC power 

electronic components to support power flow 

control and ensure stability [2]. With the 

introduction of HVDC stations using line-

commutated converters or voltage source 

converters, electrical power can be transmitted over 

long distances at different power levels.  

Utilizing internet of things (IoT) technology in 

smart grid is an important approach to integrate 

advanced sensing and communication technologies 

that can effectively avoid or reduce the damage of 

natural disasters to the transmission lines, improving 

the reliability of power transmission and reducing 

economic loss. The specific monitoring covers 

transmission tower leaning, conductor galloping, 

wind deviation, micro-meteorology, conductor 

icing, wind vibration, and conductor temperature 

[7]. 

One of the benefits of using smart grid solutions 

and applications, is that substations will be 

transformed from conventional to smart substations 

leading to more advanced local analytics and to 

more efficient management of vast amount of user 

data. Consequently, smart grid enables efficient 

transfer of surplus power generated from HRESs in 

existing locations to other remote locations. 

The artificial intelligence techniques, such as 

expert systems (ESs), fuzzy logic (FL), and artificial 

neural networks (ANNs) have enhanced power 

electronics and power engineering providing 

powerful tools for design, simulation, control, 

estimation, fault diagnostics, and fault-tolerant 

control in modern smart grid and renewable energy 

systems [8]. 

The intermittency of wind speed and solar 

irradiance is very challenging for energy production 

especially in terms of its  synchronization with the 

load demand, at any given time. The crucial role 

that the ANN technologies play lies in the accuracy 

of forecasting wind and solar data for a better 

effective power system management. The basic 

building block of ANNs is a simple processing unit 

called neuron organized in interconnected layers. 

The computational capabilities of ANNs are mainly 

determined by the connection weights, network 

architecture, and training algorithm [9].  

With the recent developments in neural networks 

and deep learning new approaches based on deep 

architectures such as multilayer perceptron (MLP), 

convolutional neural network (CNN) and recurrent 

neural network (RNN) are being classified as the 

main three optimal forecasting methods that extract 

and learn wind profiles and solar patterns. In their 

architecture, each layer of the network has only 

forward connections with the subsequent layer. 

Depending on the role and position of a layer, input, 

hidden, and output layer types are the main elements 

of a feed forward neural network. An input or data 

fed to the input layers of MLP is processed by the 

hidden layers and the result is delivered at the 

output [10]. 

Neural networks have an activation function on 

each neuron that acts on the inputs received and 

generates an output, plus a backpropagation 

algorithm that optimizes the weights on each 

connection in a process to find the optimal 

combination for the output. Neural networks are 

non-linear which allows them to produce better 

results than linear models on wind and solar data 

time series [10]. RNNs are designed to process 

sequential data by, most importantly, sharing 

parameters between the different layers and 

neurons, generating cycles in the graph sequence of 

the network. In this sense, RNNs can devour 

extensive memory. In RNN each output is a 

function of the previous elements. Thus, the values 

in a specific step will influence its value in future 

steps. RNNs have the potential to learn from 

patterns in the time series to predict the future [10]. 

The effectiveness of using CNN for levelling 

energy load forecasting was demonstrated to be 

higher compared to those obtained by ANN, support 

vector machines (SVM), factored restricted 

Boltzmann (FCRBM), long short term memories 

(LSTM), and other deep learning architectures [11]. 

CNNs have the advantage of processing big data 

and addressing it in form of a two dimensional 

matrix, widely applied in the field of image 

processing or time series. CNN weight sharing 

network structure which is similar to a biological 

neural network can reduce the complexity of the 

network model and the number of weights [12]. 

Convolution networks extract relevant features from 

small areas of the matrix, by identifying short 

intervals of the time series that could bring relevant 

information to the prediction task. The information 

could be that some patterns are relevant for the 

future behavior of wind and solar series [13]. 
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This paper is organized as follows: section 2 

introduces the major components of a smart grid. 

Section 3 defines the hybrid sizing algorithm used in 

this paper. Section 4 discusses the control strategies 

and bus configurations in smart grids. Section 5 

discusses the application of convolution neural 

network in multi-step time series wind speed and 

solar irradiance forecasting. 

 

 

2 The Smart Grid Components  
We shall first recall in a compact form the most 

important components of a smart grid, namely 

focusing on the interoperability between different 

SG components, the transmission systems 

monitoring and the communications systems. 

 

2.1 Interoperability between different SG 

components  
The interoperability between different smart grid 

components is vital. The framework shown in Table 

1 below illustrates the general components of a 

smart grid at three basic levels: the electrical 

infrastructure level, the smart infrastructure level 

and the smart grid solution level. 

TABLE 1 - SMART GRID TECHNOLOGY FRAMEWORK – FUNCTIONALITY. 

While real power is supposed to flow throughout 

the subsystems, the information should flow through 

the different networks as shown in Fig. 1. The 

concept of the virtual power plant (VPP) is also 

shown, is a central control unit and a pure software-

based layer. This layer communicates bi-

directionally with the different components of the 

information flow and power flow layers, in order to 

coordinate all load-source and source-load 

transactions within the smart grid. In fact, the VPP 

can be seen as the brain of the smart grid. 

 

Fig. 1 Smart grid components. Modified from [14]. 

 

 

2.2 Transmission systems monitoring 
The Internet of Things (IoT) technology is an 

important component in a smart grid. With an 

abundance of sensors all over the grid, a technology 

is needed to convey and process their data in real-

time to the VPP. It is an important approach 

integrating advanced sensing and communication 

that monitors transmission tower leaning, conductor 

galloping, wind deviation, micro-meteorology, 

conductor icing, wind vibration, and conductor 

temperature. The devices deployments are shown in 

Fig. 2. 

 

 

 

 

 

Fig. 2.  The sensor deployment scheme of the power 

transmission line tower in a smart grid configuration. 

 

2.2 Communications Systems 

The smart grid encompasses three different types of 

networks as illustrated in Fig. 1, namely: 
1. Home area network (HAN) extends 

communication to end points within the end-
user home or business. 

2. Neighborhood Area Network (NAN) for 
connecting multiple HANs to local access 
points. 

3. Wide Area Network (WAN) for automation, 
distribution and for covering long-haul 
distances by providing communication links 
between the NANs and the utility systems to 
transfer information. 
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In addition, communication technologies can 
be classified into either wired or wireless. 
Traditionally, wired technologies are considered 
beneficial to wireless technologies in terms of 
reliability, security and bandwidth because cables 
are easier to protect from interference. On the 
other hand, wired equipment are generally 
cheaper and need less maintenance compared to 
wireless solutions. Nevertheless, wireless 
networks have low installation costs with minimal 
cabling, which provides network connectivity 
over wide areas, especially in those regions where 
no communication infrastructure exists. 

3 Solar-Wind Microgrid Sizing 
The power system considered in this work is 

composed of three parts: wind turbines, PV panels 

and a battery power bank. The two former units 

generate electricity, in accordance with the local 

wind and solar energy resources, to supply the load. 

The battery bank forms the energy storage system 

that can supply the load when there is shortage of 

electricity, and store the surplus power when the 

power generated exceeds the load. The energy 

storage system is essential to cover the shortage of 

the renewable energy’s unpredictable and fluctuant 

nature, but its existence brings difficulties to the 

sizing problem. 

In this work, we have used the simple microgrid-

sizing algorithm proposed in [5]. The different steps 

of this algorithm are described below: 
1. Load all weather data consisting of the hourly 

wind speed and solar radiation for a period of 3 
years is loaded. 

2. Compute the average daily curves of the 
collected wind speed and solar radiation data at 
the same hour every day. 

3.  Read the daily load power consumption 
profiles. 

4. Load the different specifications of wind 
turbine, PV array and battery. 

5. Start the algorithm initialization by calculating 
the power generated by both wind turbine and 
PV array. 

6. Calculate all configurations of the system, i.e. 
numbers of solar panels, wind turbines and 
batteries, satisfying demand. 

7. Find the optimal solution that has the smallest 
implementation and system cost, for different 
seasons. 

 

4 Control Strategies of Microgrid 
In order to balance the production and demand of 

electrical energy within the combination network of 

the existing power grid and renewable energies, the 

control strategies employed via the use of 

technologies and processes and advanced control 

protocols have to be implemented. These controls 

are needed to enhance the reliability of energy 

supply of the intermittent nature of the renewable 

sources (fluctuating sunshine and wind profile). The 

controls include strategies for the optimal power 

harnessing and effective energy management, power 

device control, intelligent control of energy 

transformation, and line faults management [15]. 

The HRESs must have the ability to mitigate the 

power quality issues to supply high-quality and 

more reliable steady power. The power quality and 

system stability can be achieved by an appropriate 

control technique embedded into the power 

converter control circuit [16]. 

The HRES microgrid can be interfaced with the 

AC bus line and afterwards to the utility grid 

directly or via a common DC bus by using the 

appropriate power converters. The AC bus-linked 

HRES configuration reduces the number of power 

conversion stages and losses in power transferred to 

the load/utility [16]. 

Physically, in HRES configuration, a group of 

PV panels are interfaced   through   a  DC–DC   

converter   to   regulate   their fluctuating DC output. 

The wind turbine coupled with a  permanent magnet 

synchronous generator (PMSG) generates a three-

phase AC voltage, and its amplitude and frequency 

vary with rotor speed. Therefore, the wind turbine 

generator is connected to the DC bus via a rectifier 

and DC–DC converter. The storage battery is 

connected to the DC bus through a bidirectional 

DC–DC converter to maintain a stable supply–

demand balance at its rated capacity. The common 

DC bus collects the regulated power from various 

RESs to supply and maintain a constant DC voltage 

at the input terminal of the DC–AC inverter. A 

single DC–AC inverter is used to interface the 

common DC bus to the AC bus connected to the 

utility grid [16]. 

 

 

 

 

 

 

 
 

 

Fig. 3.  Typical configuration of the DC and AC bus 

linked HRES.  

WSEAS TRANSACTIONS on POWER SYSTEMS Danny Khoury, Fakheredine Keyrouz

E-ISSN: 2224-350X 184 Volume 14, 2019



I22

I24

Convolution + ReLu +

MAX Pooling

I23

I2

I4

I6

I1

I3

I5

Input Flatten OutputDense

Layer

Leakage current sensor

Tension sensor

Wind velocity sensor

Wind direction sensor

Rainfall sensor

Acceleration

sensor

Backbone node

Acceleration

sensor

Height sensor

Acceleration sensor

Temperature sensor

Humidity sensor

City A

City B

City B

HRES

Microgrig

Ld

Y Y

DC

 transmission line

Positive

pole

(12-Pulse)

HVDC

 Station B

City B

Forecasting
Model

HVDC

Station A

City A

? Y

Communications

Negative

pole

(12-Pulse)

Utility

AC

Filters

and

Power-

factor-

correction

capacitors

Substation A

City A

AC

3Ø

Remote Terminal

 Unit(RTU)

DC

Filter

City A

DC

Filter

Communications

Microgrid

Central

Switch

Substation B

City B Ld

IEDs:

PLC

Actuactors

Meter
? Y

Control

System

Y Y

Master

Station/SCAD/HMI

IEDs:

PLC

Actuactors

Meter

Control

System

Utility

AC Bus

T

? Y

Ld

Disptach

Strategies

Y Y

Energy

Management

System

DC - AC

3Ø

Inverter

C

Positive

pole

(12-Pulse)

AC Bus

B

Negative

pole

(12-Pulse)

AC

3Ø

Wind Turbine

AC

Filters

and

Power-

factor-

correction

capacitors

Wind

PMSG

DC

Filter

Battery

Bi-Directional

DC - DC

Converter

DC

Filter

DC - DC

Converter

DC - DC

Converter

DC Bus

? Y

PV Panels

Ld

G

Y Y

A

5 Smart Microgrid Configuration 
Putting all pieces together, the general architecture 

of a smart microgrid is illustrated in Fig. 4. Here 

substation A is connected to the HRES microgrid 

via a central switch, and to the communications 

master station via a control system. Power is 

transmitted from substration A to a remote 

substation B via a DC power transmission line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.  Power generation, transmission, and distribution – 

overall single line diagram. 

 

5 Convolutional Neural Network 
5.1 CNN Structure  
The structure of CNN is a feed-forward neural 

network. It uses the back-propagation algorithm to 

optimize the new structure to solve unknown 

parameters in the network. It starts with the pre-

processing of the samples, and the required features 

are extracted and classified or determined by 

regression analysis in order to estimate the output 

[12]. 

The pre-processing is implemented using 

convolution filters that act repeatedly on the 

receptive field and extract the local features of the 

input matrix with the convolution kernel of the 

matrix. Furthermore, the pooling and flattening 

process calculates the average or maximum in each 

section of the convolved feature. After pooling, the 

dimension of the characteristic statistics is greatly 

decreased and the generalization ability of the 

model is increased. Thus, the basic structure of 

CNN consists of a convolution layer and a pooling 

layer. The neurons in the convolution layer are 

locally connected with the previous layer, and their 

local features are extracted. These extracted features 

are processed again by the pooling layer [12]. 

 

5.2 Proposed 1D CNN 
In a 1D convolution neural network, the convolution 

layers read the input multi-time series signal using a 

kernel filter that processes small segments at a time, 

and steps across the entire segment input field. The 

pooling layer, then, takes the feature map 

projections and filter them to the most essential 

elements such as using a signal averaging or signal 

maximizing process. The output of the convolution 

and pooling layers network is one or more fully 

connected (FC) layers called the dense layer that 

interpret the internal representation and output a 

vector representing the multi-step time predicted 

[17]. This is illustrated in Fig. 5. 

 

 

 

 

 

 

 

 

Fig. 5.  The 1D CNN structure. 

 

The development of the multi-step time series 

forecasting model with CNN starts by defining the 

prior hours/days subsequence data as input that 

enables the model to read and learn to extract 

features. 

The 1D CNN model data consists of three 

segments [samples, time steps, features], whereby 

each sample consists of a specified number of time 

steps with one feature for each time step. The 

recorded dataset is divided into training and testing 
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data. Hence, the shape of the training or testing 

dataset is [training/testing, time steps, features]. The 

first step is to flatten the data, i.e. to transform the 

2D weather data into a 1D vector, and then iterate 

over the time steps whereby each iteration moves 

along one time steps and predicts the subsequent 

hours/days [17]. 

Furthermore, this multi-step series forecasting 

problem is an auto regression time series model 

which uses observations from previous time steps as 

an input to predict the value at the next time step. 

This results in accurate forecasts on a range of time 

series problems.  

The built model consists of one convolution 

layer with different number of filters progressively 

incremented and a kernel size of 1. This means that 

the input sequence will be read with a convolutional 

operation one time step at a time and this operation 

will be performed according to the number of filters, 

followed by a pooling layer which will reduce these 

feature maps, before the internal representation is 

flattened  to  one  vector.  Finally,  the   outcome   is   

TABLE 2 – ALGORITHMIC STEPS OF THE PROPOSED CODE. 

1: Load and prepare dataset 

2: Fill in missing values  

3: Split the dataset into train and test sets 

4: Convert history into inputs and outputs 

5: Build the CNN model 

6: Set verbose=0; epochs=20; batch size =4 

7: Train the model on batch 

8: Make a forecast 

9: Evaluate the model through the Walk-forward validation 

10: Plot the actual vs. predicted and APE 

11: 

Print the MAE, RMSE values of error indicators 

MAE =
1

𝑁
∑ |𝑦𝑛

𝑁

𝑛=1

− ŷ𝑛| RMSE = √
∑ (𝑦𝑛

𝑁

𝑛=1
− ŷ𝑛)2

N
 

12: Terminate 

TABLE 3 - PARAMETER SETTINGS OF THE PROPOSED MODEL. 

Parameter Setting 

1D convolution filter number 32 

1D convolution kernel size 1 

1D convolution filter number 64 

1D convolution kernel size 1 

1D convolution filter number 96 

1D convolution kernel size 1 

1D convolution filter number 112 

1D convolution kernel size 1 

1D convolution filter number 128 

1D convolution kernel size 1 

1D convolution filter number 144 

1D convolution kernel size 1 

Dense layer activation function (to limit 
output value range to [0, 1]) 

ReLU 

Optimizer (extension of stochastic gradient 

descent (DSG), to adjust parameters) 

Adaptive Moment 

Estimation (Adam) 

Verbose (option for producing detailed 
logging information) 

0 

interpreted by a fully connected layer before the 

output layer predicts the next hours/days in the 

sequence [17]. The specific steps and parameters of 

the algorithm used in this paper are illustrated in 

Tables 2 and 3. 

 

6 Case Study  
The 1D convolution neural network model built 

according to Tables 2 and 3 is trained using real pre-

processing data extracted from historical weather 

websites. The data extracted covers a period of 

28270 hours related to wind speed [18] and 1160 

days related to solar irradiance [19-20], from 

December 2016 to April 2019, for the city of Beirut. 

The dataset covering 28200 hours was used to train 

the model to predict the wind speed the next 70 

hours (~3 days). In addition, the dataset covering the 

1157 days was used to train the model to predict the 

solar irradiance the next 3 days.  

 

6.1 Forecast Accuracy  
The comparison of the wind speed for a 3 days 

forecast with existing multi-layer perceptron and 

WindNet older models based on the mean absolute 

error (MAE) and root mean square error (RMSE) 

indicators are tabulated in table 4, demonstrating the 

effectiveness of the proposed model providing the 

highest forecasting accuracy (0.69 compared to 

0.80). The MAE and RMSE of the 3 days forecast 

for the solar irradiation data had an average MAE of 

0.66. Based on historical weather data of wind speed 

and solar irradiance related to Beirut City [18-19], 

the 3 days forecast results related to wind speed are 

depicted in Fig. 6.  

TABLE 4 - COMPARISON OF WIND SPEED 3 DAYS FORECAST RESULTS. 

Test MLP [14] 
WindNet 

[14] 
Proposed Model 

3 Days 

Forecast 
MAE MAE MAE RMSE 

1: 0.951965 0.906002 0.672649 0.843 

2: 0.749479 0.726946 0.687472 0.881 

3: 0.883512 0.919904 0.697633 0.9 

4: 0.725489 0.735706 0.691511 0.874 

5: 1.00744 0.956887 0.706766 0.902 

6: 0.845219 0.743931 0.676663 0.871 

7: 0.877877 0.867812 0.705473 0.888 

8: 0.832765 0.769551 0.684255 0.879 

9: 0.800525 0.744625 0.686370 0.875 

10: 0.742297 0.644439 0.750552 0.956 

11: 0.751773 0.786698 0.668264 0.859 

Average: 0.833486 0.800227 0.693418 0.884 
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6.2 Power Distribution and Load Demand 
Based on historical weather data, the hybrid renewable 

energy microgird is sized according to the output power 

provided by the PV/Wind turbine energy sources as 

shown in Figures 7 and 8, and according the existing load 

demand as shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Wind speed 3 days actual data vs. forecast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Average wind power distribution. 

 

 

 

 

 

 

 

 

Fig. 8.  Average solar power distribution. 

 

 

 

 

 

 

 

 

 

Fig. 9.  Average power load demand. 

 

6.3 Battery State of Charge 
Using the proposed technique the battery’s state of charge 

(SOC) is maintained constant at 50 % as shown in Fig. 10 

during all seasons. This ensures a longer battery lifetime 

for the storage system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Battery state of charge during all seasons. 
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Fig. 4.  Average wind power distribution. 

6.2 System Life Cycle Cost 
We have calculated the system life cycle cost with respect 

to the number of wind turbines, PV panels, and battery 

bank capacity. The prices are based on local providers of 

wind turbines and PV panels in Lebanon. The results are 

illustrated in Table 5. 

TABLE 5 - SYSTEM LIFE CYCLE COST IN ALL SEASONS. 

Season Nwind NPV 
# of 

Batteries 

Battery 

Bank (Ah) 

System 

Cost ($) 

S
u

m
m

er
 

1 12 19 1903 67 20738 12 

2 11 18 1829 47 21467 10 

3 10 18 1755 26 22738 28 

4 9 17 1681 06 23467 26 

5 8 16 1606 86 24196 24 

6 8 15 1532 66 25630 21 

F
a

ll
 

1 13 10 1018 80 18411 51 

2 11 9 924 051 18774 46 

3 10 9 876 65 20521 83 

4 8 8 835 16 20884 80 

5 7 8 793 67 22632 16 

6 5 8 752 18 23674 53 

W
in

te
r 

1 21 12 1170 02 27533 0 

2 18 10 1031 54 26713 32 

3 15 9 893 05 26710 25 

4 12 8 754 56 26707 19 

5 9 6 616 07 25887 50 

6 7 6 584 68 27406 05 

S
p

r
in

g
 

1 14 13 12667 29 25674 50 

2 12 12 11682 83 26715 42 

3 11 11 10698 37 28461 33 

4 10 10 971 40 30207 24 

5 9 9 872 94 31953 15 

6 7 8 774 50 32994 06 

Based on table 5, the optimal configuration of the 
microgrid system is composed of 5 x 1KW wind turbines 
and 9x1.94 m2 PV modules and 6 x 100 Ah batteries. 
Hence, the system provided has an optimum life cycle 
cost of $ 25887.50. In addition the system cost in each 
season is plotted in Fig. 11. 

 

 

 

 

 

 

 

 

Fig. 11.  System life cycle cost. 

 

 

 

7 Conclusion  
Smart grid technologies optimize the management 

of energies and real-time balance between electrical 

energy supply and demand sides. Thus, the 

reliability of power dispatching process highly 

depends on the energy management system and the 

energy sources availability. The most important 

features in developing the smart grid are the 

integration of renewable energy sources, such as 

solar and wind, to increase the electricity 

consumption and to guarantee the sustainability of 

the power system. However, the intermittency of 

wind speed and solar irradiance are very challenging 

to power production from wind turbines and 

photovoltaic arrays respectively. In this context, 

CNN proved to be a practical and reliable tool to 

precisely monitor and predict the wind speed and 

solar irradiance outputs and accordingly manage the 

power transfer switching between areas that have 

surplus renewable energies to areas that have 

shortage in energies. This is done by initiating the 

virtual power plant to dispatch power according to 

schedule. In addition, the effectiveness of the 

proposed model CNN was tested using 

meteorological data related to Beirut city, Lebanon. 

The experimental data were divided into training 

and testing datasets. The large amount of training 

dataset has proven the reliability of the model when 

tested on actual data recorded in the past. The 

experimental results indicate that the proposed 

model outperforms existing techniques by 

consistently demonstrating a higher forecasting 

accuracy.   
 

References: 
[1] M. Hossain, N. Madlool, N. Rahim, J. Selvaraj, A.K. 

Pandey, Abdul Faheem Khan, “Role of smart grid in 

renewable energy: An overview”, Elsevier B.V. All rights 

reserved, Computer Communications 36 (2013) 1665–

1697. 

[2] S. Borlase, “Smart Grids Infrastructure, Technology, and 

Solution”, © 2013 by Taylor & Francis Group, LLC, CRC 

Press is an imprint of Taylor & Francis Group, an Informa 

business, International Standard Book Number-13: 978-1-

4398-2910-3 

[3] D. Gielen, F. Boshell, D. Saygin, M. Bazilian, N. Wagner, 

R. Gorini, “The role of renewable energy in the global 

energy transformation”; Elsevier Inc. All rights reserved, 

24(2019)38-50 

[4] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-

Kantarci and M. Radenkovic, "Integrating Renewable 

Energy Resources Into the Smart Grid: Recent 

Developments in Information and Communication 

Technologies," in IEEE Transactions on Industrial 

Informatics, vol. 14, no. 7, pp. 2814-2825, July 2018. 

[5] J. Li, W. Wei, and J. Xiang, “A Simple Sizing Algorithm 

for Stand-Alone PV/Wind/Battery Hybrid Microgrids”, 

Energies 2012, 5, 5307-5323; doi:10.3390/en5125307  

WSEAS TRANSACTIONS on POWER SYSTEMS Danny Khoury, Fakheredine Keyrouz

E-ISSN: 2224-350X 188 Volume 14, 2019



[6] N. Mohan, “Power Electronics: Converters, Applications, 

and Design”, Third edition, Copyright © 2003 John Wiley 

& Sons, Inc. All rights reserved.  

[7] A. Egwebe, M. FAzeli, P. Igic, P. Holland “Load sharing 

methods for inverter-based systems in islanded microgrids: 

A review”; Electronics and Energetics, Vol. 30, N0 2, June 

2017, pp. 145-160, DOI: 10.2298/FUEE1702145E.  

[8] B. K. Bose, "Artificial Intelligence Techniques in Smart 

Grid and Renewable Energy Systems—Some Example 

Applications," in Proceedings of the IEEE, vol. 105, no. 

11, pp. 2262-2273, Nov. 2017.  

[9] H. Masrur, M. Nimol, M. Faisal and S. M. G. Mostafa, 

"Short term wind speed forecasting using Artificial Neural 

Network: A case study," 2016 International Conference on 

Innovations in Science, Engineering and Technology 

(ICISET), Dhaka, 2016, pp. 1-5.  

[10] CJ. Huang, PH. Kuo, “A Short-Term Wind Speed 

Forecasting Model by Using Artificial Neural Networks 

with Stochastic Optimization for Renewable Energy 

Systems”; Energies 2007-9737, doi: 10.3390/en11102777, 

2018 

[11] K. Amarasinghe, D. Marino, Milos Manic “Deep Neural 

Networks for Energy Load Forecasting”; IEEE , 978-1-

5090-1412-5/17/ © 2017 

[12] A. Zhu, X. Li, Z. Mo and R. Wu, "Wind power prediction 

based on a convolutional neural network," 2017 

International Conference on Circuits, Devices and Systems 

(ICCDS), Chengdu, 2017, pp. 131-135. 

[13] J. . Manero, J. Bejar, U. Cortes “Wind Energy Forecasting 

with Neural Networks: A Literature Review”; ISSN 2007-

9737, doi: 10.13053/CyS-22-4-3081, Vol. 22, No. 4, 2018 

[14] Y. Saleem, N. Crespi, M. H. Rehmani and R. Copeland, 

"Internet of Things-Aided Smart Grid: Technologies, 

Architectures, Applications, Prototypes, and Future 

Research Directions," in IEEE Access, vol. 7, pp. 62962-

63003, 2019.  

[15] R. Liu, "Progress of long-distance DC electrical power 

transmission," 2017 1st International Conference on 

Electrical Materials and Power Equipment (ICEMPE), 

Xi'an, 2017, pp. 93-96.  

[16] P. Arul, V. Ramachandaramurthy, R. Rajkumar, “Control 

strategies for a hybrid renewable energy system: A 

review”; Elsevier Ltd. All rights reserved, Renewable and 

Sustainable Energy Reviews 42 (2015), 597–608 

[17] https://weathersparkcom/y/148700/Average-Weather-at-

Beirut-International-Airport-Lebanon-Year-Round; 

[Weather data extracted source are implemented in Matlab 

matrix] 

[18] https://www.timeanddate.com/weather/lebanon/beirut/histo

ric?month=7&year=2017; [Weather data extracted source 

are implemented in python wind speed forecast script]  

[19] https://power.larc.nasa.gov/data-access-viewer/; [Solar 

irradiance data extracted source are implemented in python 

solar irradiance forecast script]  

[20] F. Keyrouz, D. Khoury and S. Georges, "A Unified 

Platform for Simplifying the Design for Small-Scale Solar 

and Wind Energy Installations in Lebanon," 2018 4th 

International Conference on Renewable Energies for 

Developing Countries (REDEC), Beirut, 2018, pp. 1-7. 

WSEAS TRANSACTIONS on POWER SYSTEMS Danny Khoury, Fakheredine Keyrouz

E-ISSN: 2224-350X 189 Volume 14, 2019




